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Abstract
We propose rational designing of antiviral short-interfering RNA (siRNA) targeting highly divergent
HIV-1. In this study, conserved regions within HIV-1 genomes were identified through an
exhaustive computational analysis, and the functionality of siRNAs targeting the highest possible
conserved regions was validated. We present several promising antiviral siRNA candidates that
effectively inhibited multiple subtypes of HIV-1 by targeting the best conserved regions in pandemic
HIV-1 group M strains.

Findings
RNA interference (RNAi) is now widely used to knock-
down gene expression in a sequence-specific manner,
making it a powerful tool not only for studying gene func-
tion, but also for therapeutic applications including anti-
viral treatments [1,2]. The replication of a wide range of
viruses can be successfully inhibited using RNAi with both
short interfering RNA (siRNA) and siRNA expression vec-
tors [3,4]. However, for RNA viruses such as HIV-1,
designing functional siRNAs that target viral sequences is
problematic because of their extraordinarily high genetic
diversity. We analyzed 495 entries of near full-length HIV-
1 group M sequences available in the Los Alamos HIV
Sequence Database, and selected the highest-possible
conserved target sites for designing optimal antiviral siR-
NAs. It is known that RNAi-resistant viral mutants emerge
rapidly when targeting viral sequences due to their high
mutation rate [5-7]. Since highly conserved sequences are
likely to contain structurally or functionally constrained

elements, our approach is anticipated to resist viral muta-
tional escape.

First, we performed a detailed analysis on the HIV-1
genome to identify highly conserved targets by using 495
near full-length genome sequences of HIV-1 group M
(listed in Additional file 1). Every possible 21-mer was
generated from all of the HIV-1 group M sequences, and
their conservations among the 495 HIV-1 sequences were
exhaustively determined using siVirus engine [8]. We
defined 'conservation' as the percentage of sequence
entries out of the 495 HIV-1 sequences that showed per-
fect identity (i.e., 21/21 matches) with the cognate 21-
mer. Since many of the HIV-1 sequence entries lack 5'
untranslated region (5' UTR), the 3' LTR sequence was
used to compensate for the lack of 5' LTR sequences in
order to avoid underestimating conservation in such
regions. For the regions that cannot be compensated for in
this way (depicted in Figure 1A and 1B left panel, colored
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Conservations of siRNA target sequences among HIV-1 group MFigure 1
Conservations of siRNA target sequences among HIV-1 group M. (A) A total of 4,417,157 siRNA targets were gener-
ated from the 495 HIV-1 sequences, and their conservations within the HIV-1 genomes are represented using a color density 
plot. The line plot above the color chart represents the highest value in each position. (B) A detailed view of the three con-
served regions; 5' LTR, the cPPT/CTS in the integrase gene, and 3' PPT. 'Position' indicates the 5'-most position of each 21-
mer. The landmarks of the HIV-1 genome are adjusted to align at the center of the siRNAs by shifting 10 bp to the left. (C) Pie 
chart indicating the percentage of the 4,417,157 siRNA target sites at each conservation level.
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black), conservation was calculated by considering only
the HIV-1 sequences that contain the corresponding
regions. The result revealed that HIV-1 genomes are not
conserved for consecutive 21 bp for the most part, result-
ing in the poor conservation of many of the 21-mers over
the HIV-1 sequences (Figure 1A, colored blue). As shown
in Figure 1C, only 5.2% of the possible 21-mers are >50%
conserved. Furthermore, highly (>70%) conserved 21-
mers constitute only 1.6% of all 21-mers. It is of note that
many of the published anti-HIV-1 siRNA sequences do
not fall into this 'highly conserved' category (Additional
file 2 and [9]). From these results, we anticipate that most
of the possible siRNAs are not suitable for the efficient tar-
geting of HIV-1.

However, our analysis has identified several distinct
regions that are highly conserved in the HIV-1 genome
(Figure 1B). Such regions include the regulatory domains
responsible for the viral gene expression, such as the TATA
sequence and polyadenylation signal (AAUAAA). In addi-
tion, several regions essential for the regulation of viral
replication were also highly conserved, including the
primer activation signal (PAS)[10], primer binding site
(PBS), packaging signal (Ψ), central polypurine tract
(cPPT), central termination sequence (CTS), and 3' poly-
purine tract (3' PPT). All of these highly conserved
sequences are constrained at the nucleotide sequence level
or by their RNA secondary structure in order to execute
their functions. In contrast, regions constrained by amino
acid sequences were not necessarily conserved at the
nucleotide sequence level due to the wobbling of the third
base in the codon (data not shown). siRNAs targeting the
highly conserved regions are expected to overwhelm the
high level of sequence diversity of the HIV-1 genome, and
also to reduce the chances of viral mutational escapes.

Total of 216 highly conserved (>70%) siRNA targets iden-
tified in this study are listed in Additional file 3. In mam-
malian RNAi, the efficacy of each siRNA varies markedly
depending on its sequence. According to our guidelines
for the selection of effective siRNAs [11,12], 31 out of 216
siRNAs were predicted to be functional. Similarly, 30 and
44 siRNAs are functional according to the algorithms
reported by Reynolds et al. [13], and Amarzguioui et al.
[14], respectively (Additional file 3). This suggests that
only a limited fraction of 21-mers is best suited for use as
functional antiviral siRNAs.

For the functional validation, 23 siRNAs from Additional
file 3, and 18 additional siRNAs targeting moderately-
conserved regions were selected based on the following
criteria: (I) predicted to be functional by the algorithm of
Ui-Tei et al. [11,12], and (II) the sequence has perfect
identity with pNL4-3 (GenBank M19921). The 41 siRNA
sequences selected and their target sites are detailed in

Additional file 4. We first tested the efficacy of each siRNA
using target mRNA cleavage assay (Additional file 5 and
[15]). Briefly, a vector expressing reporter mRNA that con-
tains the siRNA target site was cotransfected into HeLa
cells with the corresponding siRNA, and the mRNA cleav-
age activity of the siRNA was evaluated by measuring the
quantity of surviving mRNA using real-time RT-PCR. This
assay allows us to directly monitor the sequence-depend-
ent potency of siRNA itself, without being affected by the
differences in target gene expression level or target second-
ary structures. The result showed that 39 out of the 41 siR-
NAs gave >60% silencing at 5 nM (Figure 2, rightmost
panel). si4794 and si4888 were not functional, probably
due to the long consecutive Gs in si4794 and internal pal-
indromes (AAAAUUUU) in si4888 [11,13].

Next, siRNAs were evaluated for their antiviral efficacy
against three evolutionary-distant groups of HIV-1: sub-
types B and B' (Thailand variant of subtype B [16]); sub-
type C; and CRF01_AE. Each siRNA was cotransfected into
HeLa cells at 5 nM with one of the four infectious molec-
ular clones: pNL4-3 (subtype B); 95MM-yIDU106 (sub-
type B'); 93IN101 (subtype C); or 93JP-NH1 (CRF01_AE).
Culture supernatants were collected 48 h after transfection
and the viral reverse transcriptase activity was measured
(Additional file 5 and [17]). The results show that 26 of
the 41 siRNAs effectively inhibited viral replication of all
four strains by >80% (Figure 2, marked with red or orange
circles). Of the remaining 15 siRNAs, 13 of them (except
si4794/4888) were shown to be functional in the target
mRNA cleavage assay, and 12 of them (except si690/
4794/4888) inhibited the replication of at least one viral
strain by >80%, indicating that the designed siRNAs have
the potential to induce RNAi. In several viral strains,
nucleotide substitutions in their target sites essentially
abolished the inhibition of viral replication (Figure 2,
blue bars with arrowheads). However, mismatches near
the ends of the target sites (see Additional file 6) did not
necessarily abolish the siRNA efficacy (Figure 2, blue bars
with asterisks). si689 and si690 did not inhibit viral repli-
cation even though these siRNAs perfectly matched to
their target sites (confirmed by DNA sequencing of the
infectious molecular clones). This is probably due to the
stable secondary structure at the si689-690 target sites in
both BMH (branched multiple hairpin) conformation
and LDI (long distance interaction) conformation of the
HIV-1 leader RNA [18] (see Additional file 4). It should be
noted that the efficacy of si575 differed when targeting
pNL4-3 and 93IN101. One possible explanation for this
is the secondary structure differences among HIV-1 sub-
types, which may alter the accessibility of the si575 target
site.

The approach described here enabled us to select highly
effective siRNAs against divergent HIV-1 strains at a high
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rate. The highly effective siRNAs (>90% inhibition) with
maximal conservation (>70%) identified in our study
include si521 (poly A site; 94% conservation), si764/770
(Ψ; 88%), si510 (TAR/poly A; 84%), si2075 (ribosomal
slip site; 70%), si2329/2330/2333 (protease region;
77%), and si4750/4751/4753 (integrase region;
71–74%). These sites are found mostly in the 5' LTR, pro-
tease, and integrase regions (Figure 2). However, the
extraordinarily high genetic diversity of HIV-1 obviously
prevents us from designing a single siRNA that can nullify
all HIV-1 strains currently circulating worldwide (Addi-
tional file 7). One possible approach is to combine multi-
ple siRNAs targeting different conserved regions [19,20].
The siRNAs selected and validated in this study have the
potential to target >99% of HIV-1 strains by combining
only two siRNAs (Additional file 7), and also considered

to resist viral mutational escape. Our approach is expected
to be highly applicable to therapeutic intervention for
other pathogens of public health importance, including
HCV, influenza virus, and SARS coronavirus, that are
known to show high genetic diversity.
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Validation of 41 siRNAsFigure 2
Validation of 41 siRNAs. The antiviral efficacy of each siRNA was tested against four HIV-1 infectious molecular clones: 
pNL4-2 (subtype B); 95MM-yIDU106 (subtype B'); 93IN101 (subtype C); or 93JP-NH1 (CRF01_AE). The potency of each 
siRNA was tested using the target mRNA cleavage assay (rightmost panel). The ability of each siRNA to cleave its target was 
evaluated by the target mRNA cleavage assay.
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